Quaid-I-Azam University
 Department of Mathematics
 PhD Admission test
 Pure Mathematics

Spring 2022 Total time: 90 mins Total marks: 100

Question 1 (a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and let $A=\{x \in \mathbb{R}: f(x)=$ $0\}$. If $\left(x_{n}\right)$ is in A and $\lim _{n \rightarrow \infty} x_{n}=x$, then show that $x \in A$.
(b) Using sequential criteria, does $\lim _{x \rightarrow 0}\left(x^{2}+\operatorname{sgn}(x)\right)$ exist?

Question 2 Let $U=\{z \in C:|z|=1\}$ and $G=\{r \in R: r \neq 0\}$, where C and R are the set of complex and real numbers resp. Then show that $(U,$.$) is not isomorphic to$ either $(R,+)$ or $(G,$.$) .$

Question 3 (a) Describe completely the characteristic polynomial and minimal polynomial of a linear transformation. Furthermore, when chracteristic roots are eigen values?
(b) Over the real field \mathbf{R} consider

$$
A=\left[\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
r & s \\
0 & r
\end{array}\right], \text { where } s \neq 0
$$

Verify that the characteristic polynomials of A and B coincide while the minimal polynomials are different.

Question 4 A mapping $f: X \rightarrow Y$ from a topological space X into a topological space Y is continuous if and only if the inverse image of every closed set V in Y is closed in X.

Question 5 (a) Compute the torsion of the circular helix

$$
r(\theta)=(a \cos (\theta), a \sin (\theta), b \theta) .
$$

(b) When $b=0$, what does $r(\theta)$ in part (a) represent?

